
LA-UR-17-20796
Approved for public release; distribution is unlimited.

Title: Codesign Performance Prediction for Computational Physics 3rd Year
Review Overview talk

Author(s): Eidenbenz, Stephan Johannes
Zerr, Robert Joseph

Intended for: Report

Issued: 2017-02-02

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC for
the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By approving this
article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the
publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

Slide 1 U N C L A S S I F I E D

Codesign Performance Prediction for
Computational Physics

3rd Year Review
Overview talk
January 26, 2017

Stephan Eidenbenz, Joe Zerr

Los Alamos National Laboratory (LANL)

Slide 2 U N C L A S S I F I E D

Performance Prediction Team FY17

Stephan Eidenbenz (PI) NSEC
Olena Tkachenko (post-BAC) NSEC

Nandkishore Santhi (co-PI) CCS-3
Guillaume Chapuis (PD) CCS-3
Gopinath Chennupathi CCS-3
Sunil Thulasidasan CCS-3

Jason Liu Florida Intl U
Ahmed Kishwar (GRA) Florida Intl U

Joe Zerr (co-PI) CCS-2
Balu Nadiga CCS-2
Max Rosa CCS-2

Rick Zamora T-1

Patricia Grubel (PD) CCS-7

Slide 3 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations, Software
•  Outlook

Slide 4 U N C L A S S I F I E D

Our problem: Coping with Novel Architectures
to Optimize Software Performance
•  End of hardware scaling laws around 2005 has led to novel hardware

architectures
–  Multi-core, many-core
–  Accelerator techniques: Vector units, Graphics Processing Units (GPU)
–  Pipelines, Prefetching, Speculative execution

•  Hardware changes disruptive to performance of existing software code
base. Require complex software changes by high-skill software
architects/computational physicists
–  Parallelism: distributed-memory, shared-memory, instruction-level
–  Latency-hiding, data movement/motion, fault resilience

•  Traditional coping strategies
–  Software engineer skills improvement programs
–  Middle-ware libraries
–  Code instrumentation, mini-apps

JAN 2016

Slide 5 U N C L A S S I F I E D

Model of “Computing”

Time

Computer

Hardware

Software

Design Spaces

Our Solution: Codesign Modeling to Predict
Performance of Novel SW/Computational
Methods on Novel HW Platforms

Input Output

Predicted
Performance Measures

Energy

Key idea: Explore (Parameterized) SW and
HW Design Spaces and Assess Algorithmic

Variations

JAN 2016

Slide 6 U N C L A S S I F I E D

Project Phases (and Status January 2017): Model
Validation before Design Space Exploration

Node/Core Models
Interconnect/MPI
Filesystems (Lustre)
Application Models

SNAP
SNSPH
SpecTAD/ParSplice
IMC/Branson
CloverLeaf
HPL

Design/
Implement

Model

Validate
Model*

Explore SW
and/or HW
Variations

Implement
Promising SW/
HW Variation

Alternative Funding Source Codesign Performance Prediction Project

* HW and Middleware models to
be validated against benchmark
applications; Application models
to be validated against actual
platform runs

Phases/
Tasks

Slide 7 U N C L A S S I F I E D

Codes

Simian – Parallel Discrete Simulation Engine

Hardware Models
•  Parameterized Model Hierarchy

(Clusters, Nodes, Cores)
e.g., Mustang, Trinity, Cielo, Titan,
Moonlight, AMD Opteron, KNL, MacPro

•  Parameterized Memory
hierarchy, Pipeline Models for
input (data dependency) graphs

•  Accelerators
K20X, K40, K6000,
M2090, Pascal

•  Interconnect
Torus
FatTree
Butterfly

Middle-
ware
Models

•  MPI
•  OpenMP

•  Legion

Performance Prediction Toolkit (PPT): Jan 2017
Rapid Prototyping Modeling (Python or Lua): Simple, Modular

Application Models

•  SNAPSim Det. Transport
•  SPHSim Hydrodynamics
•  IMCSim Monte Carlo Transport
•  MDSim MD

•  SpecTADSim MD
•  CWBJ “Jacobi” Det. Transport
•  CloverLeafSim Hydrodynamics
•  HPLSim (“Linpack”) Benchmark
•  HPCGSim Benchmark
•  PolyBenchSim Benchmark

•  ParboilSim GPU Benchmark
•  Misc

Slide 8 U N C L A S S I F I E D

PPT: Hardware Modeling Approach

1.  Define what hardware resource is modeled (e.g., core)
2.  Define and set Hardware Parameters

–  Example: Clock speed, cycles per ALU operation, cycles per RAM access,
L2-cache size, …

–  Set parameter values (“First-principles”: according to (anticipated) spec
sheets, or fitted to data)

3.  Implement high-level instruction API to application/SW model
(“tasklist”)

–  Example: tasklist = [23 mem accesses, 55 float ops, 30 vec_ops]
–  Function “compute(tasklist)” calculates the time it takes to execute tasklist
–  NEW ALTERNATIVE: More complex basic-block-wise cycle-accurate

TASK GRAPHLETS as input with data dependencies among code
instruction (Talk by N. Santhi)

JAN 2016

Slide 9 U N C L A S S I F I E D

PPT: Software Modeling Approach

1.  Model the loop structure of the code within a pseudo-code-like
Simian Process, usually using MPI model, usually without
computing the physics

2.  Identify time-intensive inner loops to synthesize into API
instructions (“tasklists”) for hardware model

–  Expert opinion
–  Code profiling

3.  Synthesize inner loops (create “tasklists” or “task graphs”) through
–  Manual method/code analysis
–  Runtime analyses tools (architecture independent ByFL)
–  NEW: Automated analysis on LLVM level for task-graph formation

JAN 2016

PPT is a tool (and design philosophy) mainly for Application
Developers, Code Teams, and perhaps Middleware Developers.

Such a focus is unique among performance prediction tools

Slide 10 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 11 U N C L A S S I F I E D

Application Models

•  SPHSim
•  IMCSim

•  SNAPSim
•  CWBJSim
•  CloverSim

•  HPLSim
•  MD-related simulators

–  MDSim, ParSplice, SpecTADSim

Result Overview
(Stephan)

More detailed
presentation
(Joe)

Separate talk
(Rick Zamora)

Slide 12 U N C L A S S I F I E D

I
I

I

I

I
I

Smoothed Particle Hydrodynamics: SPHSim
[G. Chapuis et al., WinterSim 2016]

•  SNSPH: Compute distance-dependent particle
interactions through hierarchical Oct-Tree data
structure as a latency-hiding mechanisms

•  SPHSim: stochastic application model in Simian
Lua

•  Validate, Parameter study: no need for lower
latency interconnect, physics kernel opt still
useful

I
I
I

Slide 13 U N C L A S S I F I E D

Implicit Monte Carlo: IMCSim
[In preparation]

Effect of Compute Kernel Time

•  Implicit Monte Carlo (IMC) and the Branson mini-app are an example
of non-deterministic radiation transport codes

•  IMCSim enables us to study computation vs. communication trade-
offs and identifies optimal MPI parameter settings

Validation: Strong scaling and Weak Scaling

Slide 14 U N C L A S S I F I E D

High-Performance Linpack (HPL) - HPL-Sim

0

5

10

15

20

25

0.E+00 5.E+09

Ti
m

e
[s

]

Expected Operation Count

BLAS Run Time

Time
Sim Time

0

2

4

6

8

10

0 5 10

S
im

ul
at

ed
 G

FL
O

P
s

Measured GFLOPs

HPL LU

•  PPT Parallel Linpack Prediction under development
–  HPL-Sim = HPL Algorithm + BLAS runtime estimates + PPT

+

Motivation:
(top500.org)

Slide 15 U N C L A S S I F I E D

Exascale Molecular Dynamics

TAPS
-Sim
Predi
ction
s

•  PPT is being leveraged by both BES and ECP projects to develop
and plan the implementation of parallel Accelerated Molecular
Dynamics (AMD)
–  BES: Temperature-Accelerated Parallel Splicing (TAPS)
–  ECP: Exascale Atomistic for Accuracy Length and Time (EXAALT)

Slide 16 U N C L A S S I F I E D

SNAPSim

Slide 17 U N C L A S S I F I E D

Developing SNAPSim for linear, deterministic
transport applications from SNAP
•  Deterministic transport for a structured grid of spatial

“cells”, solving for a set of nang discrete directions of
particle travel, moving at speeds within ng bins of energy
“groups”

•  Outer/inner iteration strategy to resolve group-to-group
interactions (outer) and within group interactions (inner)
–  Outer is a large matrix-vector multiplication
–  Inner is a transport mesh sweep that updates solution guess for

all cells, directions, groups in a highly ordered manner

•  “Optimal” performance of sweeps is a long-studied
computational science problem: requires mix of parallel
strategies, balance of intranode and internode tradeoffs

Slide 18 U N C L A S S I F I E D

SNAPSim overview

•  Execution time dominated by mesh sweeps and group-to-group calculations
–  A priori knowledge of task graph and workload per task
–  Fixed placement of tasks on cores à entities
–  tasklist items that are relatively predictable

Call time_compute with work chunk tasklist = [integer, float, vector, and memory ops]

Do a single sweep for each energy group:

 each process determines requirements

 wait until requirements are satisfied (with simulated MPI messages)

 advance simulation time with time_compute result

 determine dependents and send messages to inform chunks are complete

Call time_compute for outer source

For timestep_n:

 for outer_o:

 for inner_i:

 accumulate time from single sweep

 accumulate time from single outer source calculation

Slide 19 U N C L A S S I F I E D

Serial validation testing suite on Moonlight:
500 jobs varying physical domain size

0.001

0.01

0.1

1

10

100

1000

0.001 0.01 0.1 1 10 100 1000

Pr
ed

ic
te

d
R

un
 T

im
e

(s
)

Measured Run Time (s)

Ideal
Actual

•  Use a HW model
with developer
estimates of cache
efficiency

•  Relative
differences
typically within
10%

•  Expected under-
prediction because
simulator does not
include everything

•  Worst comparisons
often represent
less important
cases

Slide 20 U N C L A S S I F I E D

Moonlight strong and weak scaling tests with
full interconnect and MPI models

0.1

1

10

100

8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Processes

Strong (cells=65k, nang=48, ng=42)

Measured (SNAP)

Predicted (SNAPSim)

1

10

8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Processes

Weak (cells=16k/rank, nang=48, ng=42)

Measured (SNAP)

Predicted (SNAPSim)

Captures general trends. Larger problem necessary for weak scaling to
observe more interesting trends associated with algorithm.

Slide 21 U N C L A S S I F I E D

SNAPSim with threading middleware applied to
parallelize work over energy groups

1

10

100

0 2 4 6 8 10 12 14 16 18

Ex
ec

ut
io

n
Ti

m
e

(s
)

Threads

Strong (ng=42)
Measured (SNAP)

Predicted (SNAPSim)

1

10

100

0 2 4 6 8 10 12 14 16 18

Ex
ec

ut
io

n
Ti

m
e

(s
)

Threads

Strong (ng=118)
Measured (SNAP)

Predicted (SNAPSim)

“Large” predicts better scaling, but ultimately captures same trend. Need
to incorporate into MPI-decomposed simulator model and test.

Slide 22 U N C L A S S I F I E D

Using SNAPSim to predict alternate sweep
schedule absent present SNAP capability

0.1

1

10

100

8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Processes

Strong (cells=65k, nang=48, ng=42)

Measured (SNAP)
Predicted (SNAPSim)
Predicted: Concurrent Octant Sweeps

1

10

8 16 32 64 128 256 512 1024

Ex
ec

ut
io

n
Ti

m
e

(s
)

Processes

Weak (cells=16k/rank, nang=48, ng=42)

Measured (SNAP)

Predicted (SNAPSim)

Predicted: Concurrent octant sweeps

Does not reveal great benefit: need to test larger processor counts. Does reveal
slight cost of overhead. Permits much faster exploration of scheduling choices.

Slide 23 U N C L A S S I F I E D

SNAPSim outlook

•  Minor improvements for fidelity
–  Material mapping
–  Within group scattering operator
–  Global operations (broadcasts, reductions)

•  Better use of hardware model improvements for
predicting on-node data motion

•  Decrease simulator runtime
–  Simulations can take too long to run
–  SNAPSim itself does not scale well à insufficient parallel work of

simulator
–  Investigating options to improve runtime: Simplified

communication model, use PyPy, etc.

Slide 24 U N C L A S S I F I E D

Cell-wise Block-Jacobi: CWBJSim

Slide 25 U N C L A S S I F I E D

Cell-Wise Block-Jacobi (CWBJ) sweeps

•  At every iteration exchange incoming data from previous
iteration across parallel spatial subdomains (chunks)

•  No scheduling strategy (chunks executed simultaneously),
just step through a chunk’s mesh cells in numeric order

•  Solve a pAG × pAG linear system for p nodes, A angles and
G energy groups on every mesh cell (LU solver dgetrf[s])

•  Investigate tradeoff between reduced scheduling complexity
and increased flop count per chunk on different architectures

0 1

2 3 Chunk assigned to proc.

4 mesh cells per chunk

Slide 26 U N C L A S S I F I E D

Validation of cwbjsim-mpi.py on Cielito

•  4×8×8 = 256 triangular cells: dx = dy = 10+4
 cm

•  Square Chebyshev-Legendre (CL) Sn: n=2, …, 40
•  g=1, c=0.99, σ=1 cm-1, q=1m-3/s
•  N=3×g×n×n: dimension of phase space per triangle
•  Vacuum BCs
•  Iterative solver: GMRES(20), max it.=100, ε=10-5

•  Np = 4, 8, 16

Slide 27 U N C L A S S I F I E D

Validation results on Cielito

•  float_alu_ops
proportional to
N3 from
literature for LU
factorization
appears to drive
curves’ trends at
large N

•  Code runs more
optimally by
spreading ranks
across NUMA
nodes at Np=4,
8

•  PPT does not
yet capture
effect of NUMA
boundaries on
node à OPEN
QUESTION

Slide 28 U N C L A S S I F I E D

Algorithmic variations for CWBJ

•  Bundle group work: local matrix solve decreases
quadratically with number of groups

•  Parallel Block Jacobi: all scattering operations on RHS,
solve with local mesh sweeps

•  Consider performance per iteration: convergence
separate

•  Return to previous problem
–  g=4
–  Np=1 only
–  Nb=1, 2, 4: number of group bundles: gb=4, 2, 1

Slide 29 U N C L A S S I F I E D

Serial results on Moonlight

Slide 30 U N C L A S S I F I E D

Modeling CWBJ speedup on Moonlight GPUs

•  Leveraging GPU hardware model originally developed
by Guillaume Chapuis for a Titan node

•  Added to performance prediction toolkit hardware model
for a Moonlight node (Intel Host + NVIDIA M2090 GPU)

•  Added to GPUTest.py LU_APP test to simulate call to
MAGMA dgetrf_gpu from GPU version of CWBJ

•  To simplify generation of GPU task-list assume bulk of
GPU work is in repeated call to dgemm_fermi.cu kernel

•  For n=6 and g=1 initial case obtained good prediction
(~0.08 ms) for actual kernel time (~0.09 ms) but overall
dgetrf_gpu time appears to be higher (~1.8 ms)

Slide 31 U N C L A S S I F I E D

Preliminary results for GPU model

Slide 32 U N C L A S S I F I E D

CloverLeafSim

Slide 33 U N C L A S S I F I E D

Eulerian hydro on a single-level mesh:
CloverLeafSim
•  Compressible Euler equations are used in a number of

lab codes
•  Finite volume formula common to a number of codes

(Lagrangian step followed by advective remap)
•  Explicit time integration is commonly used
•  Fortran based (~4500 LoC)
•  MPI, OpenMP, OpenACC, CUDA, OpenCL, PGAS

Slide 34 U N C L A S S I F I E D

Validation against a 2D shock simulation
ValidaDon	of	CloverSim:	ExecuDon	Time	

Slide 35 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 36 U N C L A S S I F I E D

Middleware Models

•  MPI
–  Separate talk by Jason Liu (2 publications)
–  Fairly comprehensive capability

•  OpenMP
–  Basic parallelized loop functionality implemented, used in

SNAPSim
–  Additional functionality to be added on demand

•  Legion
–  Postdoc hire with February start date will focus on a Legion

model

•  Interconnect models
–  Separate talk on Torus, FatTree, Dragonfly

Slide 37 U N C L A S S I F I E D

 0

 2

 4

 6

 8

 10

 12

 14

 64 256 1K 4K 16K 64K 256K 1024K

Th
rou

gh
pu

t (G
by

tes
/se

c)

Data Size (bytes)

Aries MPI Throughput (Empirical vs. Simulation)

simulation (pingpong)
empirical (pingpong)
simulation (unidirectional)
empirical (unidirectional)

Aries (Dragonfly)

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 8 16 32 64 128 256 512 1024

La
ten

cy
(m

icr
os

ec
on

d)

Data Size (bytes)

Aries MPI Latency (Empirical vs. Simulation)

simulation
empirical

 0

 10

 20

 30

 40

 50

 60

 70

 4 8 16 32 64 128 256 512 1K 2K

Tim
e (

mi
cro

se
co

nd
)

Data Size (bytes)

Allreduce Time (Empirical vs. Simulation)

simulation
empirical

MPI & Interconnect Models

•  Diverse models of interconnection networks
–  All common topologies (torus, fat tree, dragonfly)
–  Existing production systems and academic

abstractions

•  Easy integration with applications
–  Stylized applications with focus on loop structures,

important numerical kernels
–  Incorporate detailed MPI operations:

communication patterns

•  Accurate and high-performance simulation of
communication behavior

–  Packet-level simulation (rather than phit-level simulation)
provides sufficiently accurate results

–  Fully parallelizable models
–  Simian for just-in-time parallel discrete-event simulation

Slide 38 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 39 U N C L A S S I F I E D

(Compute Node) Hardware Models
•  Simple “First-Principles” parameter based models (“encode spec

sheets”) with linear task lists
–  Works ok for simple architectures, such as GPU
–  Traditional CPU architectures: non-linearities due to memory hierarchies,

pipelining, pre-fetching, and speculative execution. Low-level
parallelism. Hard to find application-independent parameter values,
albeit finding parameters for individual applications not too hard

•  Learning-based hardware models
–  Training sets generated from benchmark application runs
–  Publication at ISC Workshop PMMA on energy use prediction
–  Large-scale effort stopped after several attempts

•  Static basic block simulation on pipeline models with reuse distance
computation and branch probability analysis has potential to be a
game-changer
–  See talk by N. Santhi

Slide 40 U N C L A S S I F I E D

Hardware Modeling: GPU Model Validation

•  Publication received Best Paper Award at ValueTools2016
•  Validation of three GPUs against Parboil benchmarks within 20%
•  Performance Prediction of next generation Pascal GPU predicts

speed-up of about 2.5 x
•  Model is “first principles” values from spec sheet

Validation Results for K6000 Performance Prediction for Pascal

JAN 2016

Slide 41 U N C L A S S I F I E D

Static Block Based Analysis,
Memory, Pipeline Model

Revised PPT Hardware Model

1.ABF Analysis/
Solver (offline, block-

based)

2.Statistic
al Memory
Hierarchy

Model
(offline, block-

based)

3.Simian
Pipeline Model
(pre-app simulation,

block-based,
architecture dependent)

P(BBi)

Tool produces
ABF Linear

System

tMEM,av

Algorithm
/Code
(offline)

Tool produces
Memory traces
per basic-block

Application/
Middleware

Models

N(BBi),
Opcodes in each basic-block

arranged as a data dependency
based taskgraph,

Instruction latency & b/w table,
Pipeline Port to Instruction map

tBB_i

Slide 42 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 43 U N C L A S S I F I E D

SimianJS under LA-PDES Benchmark Suite

•  In barebones tests, SimianJS
has reached event rates > 4
million events/s in serial mode
on Mac desktops, which is 2X
better than SimianLua

•  LA-PDES Benchmark Runs:
SimianLua initially performs
better with MPI over multiple
machines – due to the efficient,
JITed C/FFI in Luajit. At higher
entity and rank counts, better
memory management and
garbage collection pulls
SimianJS ahead.

Two scenarios are plotted: (a) Single machine: there
are 10,000 entities in total for each simulation (b)
Multi machine: there are 640,000 entities in total for
each simulation. A sufficiently large number of entities
ensures that strong scaling is apparent at higher rank
counts.

	100

	1000

	10000

	100000

	1x10
6

	1x10
7

	1 	2 	4 	8 	16 	32 	64 	128 	256

E
v
e
n
t
	R
a
t
e

Number	of	Ranks

Single/Multi-Machine Parallelism

Simian/JS (multi machine; 640k entities)
Simian/Lua (multi machine; 640k entities)
Simian/Lua (single machine; 10k entities)
Simian/JS (single machine; 10k entities)
Simian/Pypy (single machine; 10k entities)
Simian/Python (single machine; 10k entities)

Slide 44 U N C L A S S I F I E D

SimianJS Architecture, MPI4JS

•  SimianJS is implemented over a LANL
customized Mozilla Spidermonkey
open-source codebase

•  MPI4JS interface was developed to
support JS-native calls to MPI from
usual stand-alone (not browser based)
Javascript code

•  Several other useful C functions are
also exposed to the Javascript side

•  As a PDES engine, SimianJS user-API
closely mirrors both SimianLua and
SimianPie. Use of MPI for simulation is
optional.

User’s PDES Model Code in
Javascript
SimianJS Kernel

Spidermonkey JIT Engine

MPI4JS Layer (Optional)

MPI (MPICH/OpenMPI C/C++)

NW/OS/Hardware etc

Slide 45 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 46 U N C L A S S I F I E D

Publications 1/3

Journals
1.  Richard J. Zamora, Arthur F. Voter, Danny Perez, Nandakishore Santhi, Susan M. Mniszewski, Sunil

Thulasidasan, Stephan J. Eidenbenz:
Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics.
Simulation 92(12): 1065-1086 (2016)

2.  Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi:
GPU Performance Prediction Through Parallel Discrete Event Simulation and Common Sense. EAI Endorsed
Trans. Ubiquitous Environments 3(10): e4 (2016)

3.  TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics
S.M. Mniszewski, C. Junghans, A. Voter, D. Perez, S. Eidenbenz
ACM Transactions on Modeling and Computer Simulation (TOMACS), 2015, 25:3

Slide 47 U N C L A S S I F I E D

Publications 2/3

Peer-reviewed Conference Proceedings
1.  Guillaume Chapuis, David Nicholaeff, Stephan Eidenbenz, Robert S. Pavel:

Predicting Performance of Smoothed Particle Hydrodynamics Codes at Large Scales
Proceedings of the 2016 Winter Simulation Conference

2.  Kishwar Ahmed, Jason Liu, Stephan Eidenbenz, Joe Zerr :
Scalable Interconnection Network Models for Rapid Performance Prediction of HPC Applications
Proceedings of the 18th IEEE International Conference on High Performance Computing and Communications
(HPCC 2016)

3.  Hristo Djidjev, Stephan Eidenbenz, B. Nadiga, EJ Park:
Simulation-Based and Analytical Models for Energy Use Prediction
Proceedings of 2nd International Workshop on Performance Modeling: Methods and Applications (PMMA16), at
ISC High Performance 2016, Frankfurt, Germany, June 23

4.  Qiang Guan, Nathan BeBardeleben, Panruo Wu, Stephan Eidenbenz, Sean Blanchard, Laura Monroe, Elisabeth
Baseman, and Li Tan. 2016.
Design, Use and Evaluation of P-FSEFI: A Parallel Soft Error Fault Injection Framework for Emulating Soft Errors
in Parallel Applications.
In Proceedings of the 9th EAI International Conference on Simulation Tools and Techniques (SIMUTOOLS'16).
ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels,
Belgium, Belgium, 9-17.

5.  Kishwar Ahmed, Mohammad Obaida, Jason Liu, Stephan Eidenbenz, Nandakishore Santhi, Guillaume Chapuis:
An Integrated Interconnection Network Model for Large-Scale Performance Prediction.
ACM SIGSIM-PADS 2016: 177-187

Slide 48 U N C L A S S I F I E D

Publications 3/3

Peer-reviewed Conference Proceedings
6.  N. Prajapati, W. Ranasinghe, S. Rajopadhye, R. Andonov, H. Djidjev, and T. Grosser:

Simple, Accurate, Analytical Time Modeling and Optimal Tile Size Selection for GPGPU Stencils
22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP), 2017.

7.  Joan Boyar, Stephan J. Eidenbenz, Lene M. Favrholdt, Michal Kotrbcik, Kim S. Larsen:
Online Dominating Set
Proceedings of SWAT 2016: 21:1-21:15, also available as arXiv preprint arXiv:1604.05172

8.  Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi:
GPU Performance Prediction Through Parallel Discrete Event Simulation and Common Sense
Proceedings of the 9th EAI International Conference on Performance Evaluation Methodologies and Tools
(VALUETOOLS 2015), pp 204 -2011, 2015

9.  Guillaume Chapuis, Stephan Eidenbenz, Nandakishore Santhi, Eun Jung Park:
Simian integrated framework for parallel discrete event simulation on GPUs.
Winter Simulation Conference 2015: 1127-1138

10.  Eunjung Park, Stephan Eidenbenz, Nandakishore Santhi, Guillaume Chapuis, Bradley W. Settlemyer:
Parameterized benchmarking of parallel discrete event simulation systems: communication, computation, and
memory.
Winter Simulation Conference 2015: 2836-2847

11.  Nandakishore Santhi, Stephan Eidenbenz, Jason Liu:
The simian concept: parallel discrete event simulation with interpreted languages and just-in-time compilation.
Winter Simulation Conference 2015: 3013-3024

Slide 49 U N C L A S S I F I E D

Presentations

1. NECDC 2016 at LANL: SNAPSim, Joe Zerr, February 2016

2. CPAM Review at LANL: SNAPSim, Joe Zerr, April 2016

3. CPAM Review at LANL: Simian PDES Engine, N. Santhi, April 2016

4. CPAM Review at LANL: PPT GPU Model, G. Chapuis, April 2016

5. Salishan Conference (Oregon): Performance Prediction Toolkit, Jason Liu, April 2016

6. ModSim Workshop (PNNL): Performance Prediction Toolkit, Jason Liu, July 2016

7. JOWOG-34: PPT overview, S. Eidenbenz, February 2017

+ conference proceedings presentations

Slide 50 U N C L A S S I F I E D

Software

1.  Simian – A Parallel Discrete Event Simulation Engine for
Interpreted Languages and Just-in-time Compilation

–  Open-sourced December 2015
–  Includes Python, Lua, and Javascript versions
–  Includes LA-PDES Benchmark app (developed as part of this DR)

2.  mpi4js – An MPI Interface for Javascript
–  To be open-sourced Spring 2017

3.  Performance Prediction Toolkit - PPT
–  Open-sourcing planned after stabilization, in particular on hardware model side

Slide 51 U N C L A S S I F I E D

Table of Contents

•  Introduction: Performance Prediction Toolkit (PPT)
•  Application Models
•  Middleware Models
•  Hardware Models
•  Parallel Discrete Event Simulation – Simian
•  List of Publications, Presentations
•  Outlook

Slide 52 U N C L A S S I F I E D

Outlook 1/3

•  Technical Goals
–  Improve quality of memory hierarchy, pipelining, prefetching models

§  Resort to cycle-level simulation for (static) basic blocks
–  Improve scalability of prediction capability

§  Communication model drives event count at low MinDelays
§  Moving away from PDES-only approach, coupling with analytics
§  More aggressive use of application-specific speed-up tricks

-  Use of MPI/Interconnect model only when clearly needed
-  Learning scaling behavior at smaller rank-count

§  Increased use of pypy (Just-in-time Compilation for Python)
§  Lua or JS-based implementations (1-2 magnitude improvement)

–  Add Legion as Middleware model
– Code clean-up and open-sourcing

Slide 53 U N C L A S S I F I E D

Outlook 2/3

•  Novel Computing Performance Prediction
–  Leverage of FY16 (reserve) investments in ASIC design for

Molecular Dynamics and other mission-relevant applications has
been taken over by ASC’s Beyond Moore’s Law thrust at 100k
funding level

–  FY16 Familiarization with DWave Quantum Computing
§  Potential predictive capability for embedding algorithms onto

Dwave’s Chimera graph

Slide 54 U N C L A S S I F I E D

Outlook 3/3

•  Outreach Goals
–  Integration into work flows of multiple ECP projects

§  Codesign centers, ATDM
–  Early NSCI/ECP adopters

§  Molecular Dynamics (A. Voter)
§  Beyond Moore’s Law (N. Santhi)

–  Adoption by PARTISN, IMC teams
–  Other suggestions?

Slide 55 U N C L A S S I F I E D

APPENDIX

Slide 56 U N C L A S S I F I E D

Performance Prediction Team FY15/16

Stephan Eidenbenz (PI) NSEC
Joe Zerr (co-PI) CCS-2

Nandkishore Santhi CCS-3
Eun Jung Park (PD) CCS-3
Guillaume Chapuis (PD) CCS-3
Sunil Thulasidasan CCS-3
Hristo Djidjev CCS-3
Patrick Kelly CCS-3
Ben Reidys (HS) CCS-3

Jason Liu Florida Intl U
Mohammad Obaida (GRA) Florida Intl U
Ahmed Kishwar (GRA) Florida Intl U

Balu Nadiga CCS-2
Gabe Rockefeller CCS-2
Chris Fryer CCS-2
Randy Baker CCS-2
Max Rosa CCS-2
Kris Garrett (PD) CCS-2

Phil Romero HPC-1
Mike Warren T-2
Steve Nolen XCP-3
Qiang Guan (PD) HPC-5/CCS-7
Rick Zamora (PD) T-1

Slide 57 U N C L A S S I F I E D

Code

Simian – Parallel Discrete Simulation
Engine

Hardware Model
Library

•  Clusters
Mustang, Trinity, Cielo, Titan

•  Nodes, Cores
AMD Opteron, KNL,
MacPro

•  Accelerators
K20X, K40, K6000,
M2090, Pascal

•  Interconnect
Gemini 3D Torus
MPI

•  File system (Lustre)

Application
Simulator
Library

Benchmark Apps
•  PolyBenchSim
•  ParboilSim

Production Apps
•  SNAPSim
•  SPHSim
•  SpecTADSim

Performance Prediction Toolkit (PPT):
Rapid Prototyping Modeling (Python or Lua): Simple, Modular

Data
Learned Time Functions

Hardware Specs Data

Mustang, Haswell, IvyBridge,
SandyBridge, Vortex

Application
Instrumentation Data

PolyBench, SNAP, SPH, CloverLeaf

Status: January 2016

Slide 58 U N C L A S S I F I E D

Modeling the Computing Stack: Select Level of
HW Detail based on Suspected Bottleneck Resources

Hardware -> Entities Software -> Processes
Cluster Equation, Method
Nodes, Interconnect/Network Algorithm
Cores, (Main) Memory High-level Language

(C, Python, Fortran)
HW Threads, ALU, Vector units Intermediate Representation (IR)
Registers Machine Code, Assembly
Memory Cache Levels Prefetching, Purging
Pipelines Pipelining, Speculative execution
… …

Hardware
architecture-
independent
software
specification

Processes
implemented
in hardware

JAN 2016

Slide 59 U N C L A S S I F I E D

Codesign Performance Modeling Paradigm

•  Hardware = Entities at a chosen level of detail that could
be bottleneck resources

•  Software = Processes running on entities
•  Processes interact with and wait for other processes on

different (or same) entities
•  Processes advance their local time (“sleep”) to mimic

computation or other resource usage not modeled in
more detail

JAN 2016

Slide 60 U N C L A S S I F I E D

Performance Prediction Toolkit - Repository

•  Introduction: Performance Prediction Toolkit (PPT)

Slide 61 U N C L A S S I F I E D

Discrete Event Simulation (DES) Processes Events of a
Simulated System at Discrete Time Steps

61	

Time

Event
1.  Time stamp
2.  Destination

Entity
3.  Handler
4.  Data

Event Queue
Data Structure

Entity

Event
1.  Time stamp
2.  Destination

Entity
3.  Handler
4.  Data

Event
1.  Time stamp
2.  Destination

Entity
3.  Handler
4.  Data

. . .

ID
Handler:
•  Process event
•  Create new

events in Q

Entity
ID
Handler:
•  Process event
•  Create new

events in Q

. . .

Main Loop:
While Event Queue not empty

Pop next event;

Advance current time;

Call Handler function

on destination entity;

Current Time

Slide 62 U N C L A S S I F I E D

Parallel Discrete Event Simulation (PDES) Synchronizes
Multiple Time Lines

62	

Time

 Logical Process (LP)

Time

 Logical Process (LP)

. . .

•  The local current times of LPs synchronized through
MPI_All_Reduce calls

•  Entities live on one LP; handlers can create events with
destination entities on other LPs through MPI_send calls

•  Cross LP-events get time stamps at least MinDelay into future

Slide 63 U N C L A S S I F I E D

Related Work: HPC Simulations

•  Full system simulators:
–  Simics, SimpleScalar, GEM5, COTSon, PTLsim, Asim

•  Analytical tools:
–  TAU, Vampir, HPCToolkit, Paraver, PACE, ASPEN, Palm, GROPHECY

•  Processor/core simulators:
–  McSimA+, Zsim, Manifold

•  Memory system simulators (DRAM, NVM, Cache):
–  DRAMSim, USIMM, DrSim, Ramulator, NVMain

•  NoC simulators:
–  BookSim, GARNET, DARSIM, HORNET, TOPAZ, DNOC

•  FPGA-based simulators:
–  Ramp Gold, HAsim, DART, Arete

Slide 64 U N C L A S S I F I E D

Related Work: Performance Prediction

•  PPT (LANL): physics-application oriented suite of performance prediction
models for large-scale systems. Python, Lua. Includes hardware
interconnect and node-level models, MPI and OpenMP, and a set of
parameterized physics codes models

•  BigSim (UIUC): for performance prediction of large-scale parallel
machines (with relatively simple interconnect models), implemented in
Charm++ and MPI, shown to scale up to 64K ranks

•  xSim (ORNL): scale to128M MPI ranks using PDES with lightweight
threads, include various interconnect topologies (high-level models, e.g.,
network congestion omitted)

•  SST and SST Macro (SNL): a comprehensive simulation framework,
separate implementation, one intended with cycle-level accuracy and the
other at coarser level for scale

•  CODES (ANL): focused on storage systems, built on ROSS using reverse
computation simulation that scales well

